Introduction to Neural Networks

Saeed Reza Kheradpisheh

Dept. Computer Science Shahid Behesti University

Typical ML

Feature **Extractions**

Classification

Data independent

Supervised Learning

Typical ML

Feature **Extractions**

Classification

Data independent Supervised Learning

Deep Learning

Supervised Learning

Why DL

Biological v.s. Arificial Neuron

Perceptron

- Input vector: $X = [x_1, ..., x_d]$
- Target output: $Y \in \{-1,+1\}$
- Input weights: $W = [w_1, ..., w_d]$
- Predicted output: $y = sign\{W.X\} = sign\{\sum_{i=1}^{d} w_i x_i\}$

Perceptron with bias

Loss Function

Consider a d-dimensional binary classification problem:

- Training set: $D = \{(X_i, Y_i) | i = 1 : N\}$
- Training sample: $X_i = [X_{i1},...,X_{id}], Y_i \in \{-1,+1\}$
- Perceptron predicts: $y_i = sign\{W.X_i\}$
- Loss Function:

$$
L = \sum_{(X_i, Y_i) \in D} (Y_i - y_i)^2 = \sum_{(X_i, Y_i) \in D} (Y_i - sign\{W.X_i\})^2
$$

Learning in Perceptron

• Loss Function:

$$
L = \sum_{(X_i, Y_i) \in D} (Y_i - y_i)^2 = \sum_{(X_i, Y_i) \in D} (Y_i - sign\{W.X_i\})^2
$$

- \bullet Loss function depends on W and D.
- As D is given, hence, learning is to find W^* minimizing the loss function:

$$
W^* = \underset{W}{\text{argmin}} \sum_{(X_i, Y_i) \in D} (Y_i - sign\{W.X_i\})^2
$$

How to find the optimum weight

• For an arbitrary weight vector, $-\nabla_w L$ shows the direction of the steepest descent of the loss function.

$$
\triangledown_{w}L=[\frac{\partial L}{\partial w_{1}}\,...,\frac{\partial f}{\partial w_{d}}]
$$

 \bullet Find W^* by starting from a random weight vector and an iterative use of gradient:

Gradient Descent

To find optimum weights (W^*) :

- Start from a random initial weight vector, W^0 .
- Through an iterative manner, use gradients and update the weights:

$$
W^{t+1} = W^t + \eta \sum_{(X_i, Y_i) \in D} (Y_i - y_i) X_i
$$

• The laerning rate is controled by η .

Stochastic Gradient Descent SGD

In SGD, learning is performed sample by sample:

- **O** Shuffle the training set.
- **2** Compute the perceptron's outputy; for the *i*-th sample.
- **3** Update the weights using $W^{t+1} = W^t + \eta (Y_i y_i) X_i$.
- Repeat steps 2 to 3 for all training samples.
- **Jump to step 1** if the totall loss $L = \sum_{(X_i, Y_i) \in D} (Y_i y_i)^2$ is below a certain value or the maximum number of iteration is reached

Initial weights matter

Learning rate matters

Perceptorn is a linear model

LINEARLY SEPARABLE

NOT LINEARLY SEPARABLE

The XOR problem

XOR Problem

A single perceptron can only solve linear problems.

Multi-layer perceptron can solve non-linearly separable problems.

Multi-layer Perceptron (MLP)

$$
a^h(x) = W^h.x + b^h
$$

$$
\begin{aligned} \bullet \ a^h(x) &= W^h \cdot x + b^h \\ \bullet \ h(x) &= \Phi(a^h(x)) = \Phi(W^h \cdot x + b^h) \end{aligned}
$$

\n- $$
a^h(x) = W^h \cdot x + b^h
$$
\n- $h(x) = \Phi(a^h(x)) = \Phi(W^h \cdot x + b^h)$
\n- $a^o(x) = W^o \cdot h(x) + b^o$
\n

\n- $$
a^h(x) = W^h \cdot x + b^h
$$
\n- $h(x) = \Phi(a^h(x)) = \Phi(W^h \cdot x + b^h)$
\n- $a^o(x) = W^o \cdot h(x) + b^o$
\n- $f(x) = \Phi(a^o(x)) = \Phi(W^o \cdot h(x) + b^o)$
\n

\n- $$
a^h(x) = W^h \cdot x + b^h
$$
\n- $h(x) = \Phi(a^h(x)) = \Phi(W^h \cdot x + b^h)$
\n- $a^o(x) = W^o \cdot h(x) + b^o$
\n- $f(x) = \Phi(a^o(x)) = \Phi(W^o \cdot h(x) + b^o)$
\n

Activation Functions

Sign function: $\Phi(a) = sign(a)$ Sigmoid function: $\Phi(a) = \frac{1}{1+e^{-a}}$ Tangh function: $\Phi(a) = \frac{e^{2a}-1}{e^{2a}+1}$

ReLU: $\Phi(a) = max\{a, 0\}$ Hard Tangh: $\Phi(a) = max\{min[v, 1], -1\}$

Derivations of Activations

Softmax

$$
softmax(x) = \frac{1}{\sum_{i=1}^{n} e^{x_i}} \cdot \begin{bmatrix} e^{x_1} \\ \vdots \\ e^{x_n} \end{bmatrix}
$$

- Softmax activation for each neuron is in range [0,1].
- The summation of neurons' activation is 1. \bullet
- It is ususally used in the output layer. \bullet

Error Backpropagation

Error Backpropagation

Error Backpropagation

$$
\frac{\partial L}{\partial w_{(h_{r-1}^i, h_r^j)}} = \delta(h_r^i, o) \cdot h_{r-1}^i \cdot \Phi'(a_{h_r^i})
$$

SGD using Backpropagation

For each training sample:

- Compute the forward path.
- Compute $\Delta(o, o)$ for each output neuron.
- Update each connecting weight of the output layer as

$$
w_{(h_k, o)} = w_{(h_k, o)} - \eta \cdot \delta(o, o) \cdot h_k \cdot \Phi'(a_o)
$$

- For $r = k, k 1, ..., 1$:
	- Compute $\Delta(h_r^i, o)$ for the *i*-th neuron at the *r*-th hidden layer.
	- Update each connecting weight of the i -th neuron at the r -th hidden layer as:

$$
w_{(h_{r-1},h_r)} = w_{(h_{r-1},h_r)} - \eta \cdot \delta(h_r,o) \cdot h_{r-1} \cdot \Phi'(a_{h_r})
$$

SGD with Momentum

 $\Delta w_{ij} = \eta \cdot \delta_i \cdot x_j \cdot \Phi'(a_i) + \alpha \cdot \Delta w_{ij}$

Architectures

Overfitting

- **Generalization:** To establish a balance between correct \bullet responses for the training patterns and unseen new patterns.
- Memorization: When the model momorizes training samples instead of learning the descriptive common patterns.
- Overfitting: Weak generalization. It happens when the network complexity is more than the problem complexity.

How to avoid overfitting

- One possible approach is to reduce the size of the network.
	- However, large networks have the potential to be more powerful than small networks.
- Provide more training samples (not always possible).
- Stop learning before overfitting happens.
- Use regularization terms to dynamically adjust network complexity.
- Use ensemble methods.
- use random dropout technique for hidden neurons.

Regularization

- Since a larger number of parameters causes overfitting, a natural approach is to constrain the model to use fewer non-zero parameters.
- The most applied regularization is adding the penalty $\lambda ||W||$ to the loss function.

$$
L = \frac{1}{2}(Y - y)^2 + \lambda ||W||
$$

• Therefore the learnin rule is re-written as:

$$
\Delta w_{ij} = \eta.\delta_i.x_j.\Phi'(a_i) - \eta.\lambda.w_{ij}
$$

Early stopping

• Split training samples into a training set (80%) and a validation set (20%).

Dropout

(a) Standard Neural Network

(b) Network after Dropout

Thank you