Introduction to

Neural Networks

Saeed Reza Kheradpisheh

%,53‘5 Dept. Computer Science
(| Shahid Behesti University

Typical ML

Feature
Extractions

Classification

Data Supervised
iIndependent Learning

Typical ML

Feature
Extractions

Classification

Data Supervised
independent Learning

Deep Learning

. NN NN
Layer Layer

Supervised
Learning

(/_

performance

Why DL

d—'_—_'__'_'_—

deep learning

other learning

amount of data

Biological v.s. Arificial Neuron

neuron cell body
synapse
|
axon of nucleus
previous axon
newron

neuron cell body

nucleus .
/ axon dendrites of

/ l‘fp.i next neuron

electrical
signal

dendrites

NEURON

DENDRITES WITH
SYNAPTIC WEIGHTS

Perceptron

INPUT NODES XA W.X>0 W.X=0

X, =bOw\‘ OUTPUT NODE + + +
+

W.X<0

(0,0) X4

@ Input vector: X = [x,...,xg]

@ Targetoutput: Y € {—1,4+1}

@ Input weights: W = [wy, ..., wy]

® Predicted output: y = sign{W.X} = sign{Y% , wix;}

INPUT NODES

Perceptron with bias

BIAS NEURON

Loss Function

Consider a d-dimensional binary classification problem:
@ Training set: D ={(X;,Y;)|li=1:N}
@ Training sample: X; = [X;1,...,Xi], Y; € {—1,+1}
@ Perceptron predicts: y; = sign{ W .X;}
@ Loss Function:

Learning in Perceptron

@ Loss Function:

L= Y Yi-yw)3’= Y (Yi—sign{W.X;})’

(Xi,Yi)GD (Xi,Yi)ED

@ Loss function depends on W and D.

@ As D is given, hence, learning is to find W* minimizing the loss
function:

W* = argmin Z (Y; — sign{W.X;})?
W (x.Y)eD

How to find the optimum weight

@ For an arbitrary weight vector, —V,,L shows the direction of the
steepest descent of the loss function.

of

owy

VoL = oL |
=13,

@ Find W* by starting from a random weight vector and an iterative

use of gradient: A

L(w) Initial

. .
:"/ Gradient

Global cost minimum

-— I‘min(W)

>

INPUT NODES

Gradient Descent

To find optimum weights (W*):
@ Start from a random initial weight vector, WV.
@ Through an iterative manner, use gradients and update the
weights:
Wt =w+n Y (Yi—y)Xi
(X;,Y;)eD

@ The laerning rate is controled by .

N

L(w) Initial / —— Gradient

Global cost minimum

__/ I_‘min(w)

L
7z

Stochastic Gradient Descent SGD

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.
© Update the weights using W't = W’ +n(Y; —y,)X..
Q Repeat steps 2 to 3 for all training samples.

© Jump to step 1 if the totall loss L = ¥ (x, y,)ep(¥i — yi)* is below a
certain value or the maximum number of iteration is reached

Initial weights matter

L(w)

N\

Global opt.

|
wPO W

LW)

Learning rate matters

Too low Just right

\ ‘.“
',\ "I‘}
/ \
| /
— g \

LW)| | |

L(W)

w
A small learning rate learning
requires many updates rate swiftly reaches the
before reaching the minimum point

minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Perceptorn is a linear model

+ *
+++ * *
+
+
+
*x *x
h X e o4
* ** ++
* * + +

LINEARLY SEPARABLE NOT LINEARLY SEPARABLE

The XOR problem

N

XOR Problem
M

Training Data

F1 xg t %.)

@’f’# A single perceptron can only
0 0 0 T2 O, solve linear problems.
e
1 0 1 L x XOR Gate
1 e R gate
0 1 1 0
1 1 0 o
o &

Multi-layer perceptron can solve
non-linearly separable problems.

Multi-laver Perceptron (MLP)

s

B N

——
.
o
o
- ~ P—
-
. .

Inpur level
Output level

c

[0
O
Qo
c

[
>
K

k™ hidden
level

Forward Propagation

'!1";1
Ly SN j
B A i
X) |ay
T A
i"lll ’ b ..-. [,
W b
- _H‘. ;
i [£
- I | -1
Iy —
k
X a (x)

Forward Propagation

—

! "f —
Qy \ =) hi
LT — | '-1_—-*; h
a(x) hix)

@ d'(x) =W x+b"
@ h(x) =®(d"(x)) = D(W"'.x+b")

Forward Propagation

b
ho | — ff‘;m“a ag
/ (X ,a' O —1
h, | —
b
h{x) a’(x)
o ah(JC) — th_l_bh
Q h(x) — (I)(ah(x)) — (D(Wh.x—l—bh)

@ a’(x) = WO.h(x) +b°

Forward Propagation

L f
Qg f
a”(x) fx)

o d'(x)=Whx+b"

@ h(x) = ®(a"(x)) = D(Whx+b")

@ a’(x) = W°.h(x)+b°

@ f(x)=d(a’(x)) = D(W°.h(x)+b°)

L

T
W

€Ly

X
o a"(x)

by,

Forward Propaagation

b

o _;;H‘. ; _.e'""-_-""\._
|I.~ _l.-':_.-fl ﬂ'll | —A ',.'I I|r|l i\ :- —_— II_,--" ZH.\:I
-\..\"\ " o ‘..._.-'
M WS
— |
R N / /

i ke | \ e
S — e‘f;\ .
a’(x) h(x)
= Whx+b"

fo

fr-1

Activation Functions

Sign function: ®(a) = sign(a) ReLU: ®(a) = max{a,0}

Sigmoid function: ®(a) = 1+1e—a Hard Tangh:

Tangh function: ®(a) = EZ: ®(a) = max{min[v,1],—1}
(@) Mentity (b)Sign () Sigmoid

(d) Tanh (e) ReLU (f) Hard Tanh

Derivations of Activations

1t 1
i 1 osf 0.8
06 06
0.4 0.4
o0sf
0.2]
=0.21- 0.2
03|
=0.4F 0.4
-0} -08
-0.8F -0.81
-1F -1t
2 =] 05 0 05 1 1.5 2 -2 1.5] 05 0 05 15 —10 -5 0 5 10
(a) Identit (b) Si (c) Sigmoid
T - T - T
i3 i3
o8- o.8f
06 0]
0.4 0.4
0.2 0.2]
0
-0 -02f -02)
04 -0.4f -04f
-0 0.6t 06}
=08 0.8 8k
-1 —F 1k
4 2 0 2 4 -2 = 0 0 0. -2 05 [05

(f) Hard Tanh

Softmax I

softmax(x) = o——
i=1¢"

@ Softmax activation for each neuron is in range [0,1] .
@ The summation of neurons’ activation is 1.
@ It is ususally used in the output layer.

b
. AN T D i
Jﬂ . :., }_- ,.'I U_.l.rx}u I_,.f/ |]F,F“ \--
/S F'L'x-" S~] S T N .
. ", K _y \
I alXh 1 N %. 5 alx),
--‘ '.-l. \"\\ /'-\\"'\-_,-F'"f.
"‘.?i‘." h w-‘:_l_-.f . 1‘. Tl ;-“_\ /___1_\
r d .\‘-\. .‘I .l':-I V / '\-.\I o
| .. i 4 - 2 J alX)
p ,.-"_'M\' o ™ f A M
N Ir] P
1 X Hax) e e | £ ,
: . _ f"l i, xh_j ||IJ|

sofltmar

Error Backpropagation

w(hﬂr—l 7h’r‘)

— OO GO OO

OL 9L | 9o Y{ Ohipi| O,
8w(h7~_1,h7~) N do 8hk : 8h@ 8w(hr_1,hr)

1=T

Error Backpropagation

OL - Z 8_Lﬁk_1 Ohii1 8h7j;
8’w(hi_1’hi) [hj " do 8hk i ahz 8w(hg_1jh{i)

"

J y_ 8L
6(hT70) T 6h?,1

Error Backpropagation

Py e & 0
OO 0O .
O .. i%%@/\ ----- O
O o O O
OL i /
OW(ni_y ,ni) = Sl an)

SGD using Backpropagation

For each training sample:
@ Compute the forward path.
@ Compute A(o,0) for each output neuron.
@ Update each connecting weight of the output layer as

Wity0) = Wh0) — 1-§(020)- B - B (a,)

@ Forr=kk—1,... 1:

o Compute A(hL,0) for the i-th neuron at the r-th hidden layer.
e Update each connecting weight of the i-th neuron at the r-th
hidden layer as:

w(hr—lyh'r’) — w(hr—lahr) o 77°‘8(h7‘70)) hr—l) ¢,(a’hr)

SGD with Momentum

Awij = 1]5 ,-.xj.éb'(ai) + OC.AW,']'

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Architectures

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (REM) Deep Belief Netwark (DEN)

SNV, L0
) I

R s Pl X

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics NMetwork (DCIGN)

Overfitting

0 1 0 1 0

@ Generalization: To establish a balance between correct

responses for the training patterns and unseen new patterns.

@ Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.

@ Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.

How to avoid overfitting

One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).
Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.
use random dropout technique for hidden neurons.

Regularization

@ Since a larger number of parameters causes overfitting, a natural
approach is to constrain the model to use fewer non-zero
parameters.

@ The most applied regularization is adding the penalty A||W]|| to
the loss function .

1
L= (Y =y + AW

@ Therefore the learnin rule is re-written as:
AWij — n.Si.xj.CI)'(a,;) — T].?\..Wij

Early stopping

@ Split training samples into a training set (80%) and a validation
set (20%).

Mean- Validation
squared sample
error
| Early Training
| stoppmg sample
: point
| ——
0

Number of epochs

Dropout

(a) Standard Neural Network (b) Network after Dropout

Thank you

