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Biological v.s. Arificial Neuron
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Perceptron

INPUT NODES XA W.X>0 W.X=0

X, =bOw\‘ OUTPUT NODE + + +
+

W.X<0

(0,0) X4

@ Input vector: X = [x,...,xg]

@ Targetoutput: Y € {—1,4+1}

@ Input weights: W = [wy, ..., wy]

® Predicted output: y = sign{W.X} = sign{Y% , wix;}



INPUT NODES

Perceptron with bias
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Loss Function

Consider a d-dimensional binary classification problem:
@ Training set: D ={(X;,Y;)|li=1:N}
@ Training sample: X; = [X;1,...,Xi], Y; € {—1,+1}
@ Perceptron predicts: y; = sign{ W .X;}
@ Loss Function:



Learning in Perceptron

@ Loss Function:

L= Y Yi-yw)3’= Y (Yi—sign{W.X;})’

(Xi,Yi)GD (Xi,Yi)ED

@ Loss function depends on W and D.

@ As D is given, hence, learning is to find W* minimizing the loss
function:

W* = argmin Z (Y; — sign{W.X;})?
W (x.Y)eD



How to find the optimum weight

@ For an arbitrary weight vector, —V,,L shows the direction of the
steepest descent of the loss function.
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@ Find W* by starting from a random weight vector and an iterative

use of gradient: A
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Gradient Descent

To find optimum weights (W*):
@ Start from a random initial weight vector, WV.
@ Through an iterative manner, use gradients and update the
weights:
Wt =w+n Y (Yi—y)Xi
(X;,Y;)eD

@ The laerning rate is controled by .
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Stochastic Gradient Descent SGD

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.
© Update the weights using W't = W’ +n(Y; —y,)X..
Q Repeat steps 2 to 3 for all training samples.

© Jump to step 1 if the totall loss L = ¥ (x, y,)ep(¥i — yi)* is below a
certain value or the maximum number of iteration is reached



Initial weights matter
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Learning rate matters
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Perceptorn is a linear model
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The XOR problem
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@’f’# A single perceptron can only
0 0 0 T2 O, solve linear problems.
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Multi-layer perceptron can solve
non-linearly separable problems.



Multi-laver Perceptron (MLP)
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Forward Propagation
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Forward Propagation
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@ d'(x) =W x+b"
@ h(x) =®(d"(x)) = D(W"'.x+b")



Forward Propagation

b
ho | — ff‘;m“a ag
/ (X ,a' O —1
h, | —
b
h{x) a’(x)
o ah(JC) — th_l_bh
Q h(x) — (I)(ah(x)) — (D(Wh.x—l—bh)

@ a’(x) = WO.h(x) +b°




Forward Propagation

L f
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a”(x) fx)

o d'(x)=Whx+b"

@ h(x) = ®(a"(x)) = D(Whx+b")

@ a’(x) = W°.h(x)+b°

@ f(x)=d(a’(x)) = D(W°.h(x)+b°)
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Activation Functions

Sign function: ®(a) = sign(a) ReLU: ®(a) = max{a,0}

Sigmoid function: ®(a) = 1+1e—a Hard Tangh:

Tangh function: ®(a) = EZ: ®(a) = max{min[v,1],—1}
(@) Mentity  (b)Sign () Sigmoid

(d) Tanh (e) ReLU (f) Hard Tanh



Derivations of Activations
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Softmax I

softmax(x) = o——
i=1¢"

@ Softmax activation for each neuron is in range [0,1] .
@ The summation of neurons’ activation is 1.
@ It is ususally used in the output layer.
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Error Backpropagation
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Error Backpropagation
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Error Backpropagation
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SGD using Backpropagation

For each training sample:
@ Compute the forward path.
@ Compute A(o,0) for each output neuron.
@ Update each connecting weight of the output layer as

Wity0) = Wh0) — 1-§(020)- B - B (a, )

@ Forr=kk—1,... 1:

o Compute A(hL,0) for the i-th neuron at the r-th hidden layer.
e Update each connecting weight of the i-th neuron at the r-th
hidden layer as:

w(hr—lyh'r’) — w(hr—lahr) o 77°‘8(h7‘70) ) hr—l ) ¢,(a’hr)



SGD with Momentum

Awij = 1]5 ,-.xj.éb'(ai) + OC.AW,']'




Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Architectures

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (REM) Deep Belief Netwark (DEN)

SNV, L0
) I

R s Pl X

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics NMetwork (DCIGN)




Overfitting

0 1 0 1 0

@ Generalization: To establish a balance between correct

responses for the training patterns and unseen new patterns.

@ Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.

@ Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.



How to avoid overfitting

One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).
Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.
use random dropout technique for hidden neurons.



Regularization

@ Since a larger number of parameters causes overfitting, a natural
approach is to constrain the model to use fewer non-zero
parameters.

@ The most applied regularization is adding the penalty A||W]|| to
the loss function .

1
L= (Y =y + AW

@ Therefore the learnin rule is re-written as:
AWij — n.Si.xj.CI)'(a,;) — T].?\..Wij



Early stopping

@ Split training samples into a training set (80%) and a validation
set (20%).

Mean- Validation
squared sample
error
| Early Training
| stoppmg sample
: point
| ——
0

Number of epochs



Dropout

(a) Standard Neural Network (b) Network after Dropout
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