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Abstract

Deep neural networks are powerful learning models that achieve excellent performance on
visual and speech recognition problems.
It can be difficult to interpret and can have counter-intuitive properties.

The paper discusses two counter-intuitive properties of deep neural networks.

1 There is no distinction between individual high level units and random linear combinations of
high level units.

It suggests that it is the space, rather than the individual units, that contains the semantic information in
the high layers of neural networks.

2 The authors found that applying an imperceptible non-random perturbation to a test image, it is
possible to arbitrarily change the network’s prediction.

They term the so perturbed examples Adversarial Examples.
They found that adversarial examples are relatively robust, and are shared by neural networks with varied
number of layers, activations or trained on different subsets of the training data.
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Notation

Denote by x ∈ Rm an input image, and ϕ(x) activation values of some layer, wherem is
the input dimension.
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Units of ϕ(x)

Traditional computer vision systems rely on feature extraction: often a single feature is
easily interpretable, e.g. a histogram of colors.
Some works interpret an activation of a hidden unit as a meaningful feature. They look for
input images which maximize the activation value of this single feature.
The aforementioned technique can be formally stated as visual inspection of images x?,
which satisfy (or are close to maximum attainable value):

x′ = argmax
x∈I

⟨ϕ(x), ei⟩ (1)

where I is a hold-out set of images from the data distribution that the network was not
trained on and ei is the natural basis vector assocated with the i-th hidden unit.
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Units of ϕ(x)

The experiments show that any random direction v ∈ Rn gives rise to similarly
interpretable semantic properties.
More formally, They find that images x′ are semantically related to each other, for many
x′ such that

x′ = argmax
x∈I

⟨ϕ(x), v⟩ (2)

This suggests that the natural basis is not better than a random basis for inspecting the
properties of ϕ(x).
This puts into question the notion that neural networks disentangle variation factors across
coordinates.
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Network Level Inspection

So far, unit-level inspection methods had relatively little utility beyond confirming certain
intuitions regarding the complexity of the representations learned by a deep neural network
Network level inspection methods can be useful in the context of explaining classification
decisions made by a model

For instance, identify the parts of the input which led to a correct classification of a given visual
input instance

Such global analyses are useful in that they can make us understand better the
input-to-output mapping represented by the trained network.
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How to Explain Individual Classification Decisions

A probability function P : Rd → [0, 1] of a classification model learned from examples
{(x1, y1), ..., (xn, yn)} ∈ Rd × {−1,+1} (binary classification) the explanation vector for a
classified test point x0 is the local gradient of p at x0:

ηp(x0) = ∇x0P (x0)

By this definition the explanation η is again a d-dimensional vector just like the test point
x0 is.
The sign of each of its individual entries indicates whether the prediction would increase or
decrease when the corresponding feature of x0 is increased locally and each entry’s
absolute value give the amount of influence in the change in prediction.
As a vector η gives the direction of the steepest ascent from the test point to higher
probabilities for the positive class.
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Smoothness Prior (Local Generalization)

Smoothness Prior
For a small enough radius ϵ ≥ 0 in the vicinity of a given training input x, an x+ r
satisfying ∥r∥ ≤ ϵ will get assigned a high probability of the correct class by the model.

This kind of smoothness prior is typically valid for computer vision problems.
In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

The main result of the paper is that for deep neural networks, the smoothness assumption does
not hold.

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples February 6, 2024 16 / 50



Intriguing properties of neural networks Explaining and Harnessing Adversarial Examples Towards Deep Learning Models Resistant to Adversarial

Blind Spots

In some sense, what we describe is a way to traverse the manifold represented by the
network in an efficient way (by optimization) and finding adversarial examples in the
input space.
The adversarial examples represent low-probability (high-dimensional) “pockets” in the
manifold, which are hard to efficiently find by simply randomly sampling the input around
a given example.
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Formal description

For a given x ∈ Rm image and target label l ∈ {1...k}, we aim to solve the following box-
constrained optimization problem:

Minimize ∥r∥2 subject to:
f(x+ r) = l

x+ r ∈ [0, 1]m

Informally, x′ = x+ r is the closest image to x classified as l by f .
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f(x+ r) = l

x+ r ∈ [0, 1]m

Informally, x′ = x+ r is the closest image to x classified as l by f .
The minimizer r might not be unique.
This task is non-trivial only if f(x) ̸= l.
In general, the exact computation of x′ is a hard problem, so we approximate it by using a
box-constrained L-BFGS.
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Formal description

Recall: Generalized Lagrange Function (Karush–Kuhn–Tucker (KKT) )

Suppose we wish to maximize f(x) subject to gj(x) = 0 for j = 1, · · · , J , and hk(x) ≥ 0
for k = 1, · · · ,K.

Minimize f(x)

subject to gj(x) = 0 for j = 1, · · · , J
hk(x) ≥ 0 for k = 1, · · · ,K

We introduce Lagrange multipliers {λj} and {µk}, and then optimize the Lagrangian function
given by

L(x, {λj}, {µk}) = f(x) +
J∑

j=1

λjgj(x) +
K∑

k=1

µkhk(x)

subject to µk ≥ 0 and µkhk(x) = 0 for k = 1, · · · ,K.

The optimal point x⋆ of the above constrained optimization on f(x) is the same as the optimal
point of the unconstrained optimization L.

(See this playlist for more information about Lagrange multipliers)
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constrained optimization problem:

Minimize ∥r∥2 subject to:
f(x+ r) = l

x+ r ∈ [0, 1]m

Informally, x′ = x+ r is the closest image to x classified as l by f .
The minimizer r might not be unique.
This task is non-trivial only if f(x) ̸= l.
In general, the exact computation of x′ is a hard problem, so we approximate it by using a
box-constrained L-BFGS.

Concretely, we find an approximation of x′ by performing line-search to find the minimum c > 0
for which the minimizer r of the following problem satisfies f(x+ r) = l.

Minimize c∥r∥2 + lossf (x+ r, l) subject to x+ r ∈ [0, 1]m

Since neural networks are non-convex in general, so we end up with an approximation to
find solution.
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Adversarial Examples

(Universal and Transferable Adversarial Attacks on Aligned Language Models, Zou, 2021)
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Experimental results

Intriguing properties
100% success rate

For all the networks we studied (MNIST, AlexNet (ImageNet)), for each sample, we have always
managed to generate very close, visually hard to distinguish, adversarial examples that are
misclassified by the original network.

Cross model generalization
A relatively large fraction of examples will be misclassified by networks trained from scratch with
different hyper-parameters (number of layers, regularization or initial weights).

Cross training-set generalization
A relatively large fraction of examples will be misclassified by networks trained from scratch on a
disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just
the results of overfitting to a particular model or to the specific selection of the training set.
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Spectral Analysis of Unstability

The adversarial examples show that there exist small additive perturbations of the input
(in Euclidean sense) that produce large perturbations at the output of the last layer.
Mathematically, if ϕ(x) denotes the output of a network ofK layers corresponding to
input x and trained parametersW , we write

ϕ(x) = ϕK(ϕK−1(...ϕ1(x;W1)...;WK−1)WK)

where ϕK denotes the operator mapping layer k − 1 to layer k.

The unstability of ϕ(x) can be explained by inspecting the upper Lipschitz constant of
each layer.
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Lipschitz continuity

A function f : I → R over some set I ⊆ Rd is called Lipschitz continuous if there exists a
positive real constant L such that, for all x, y ∈ I ,

|f(y)− f(x)| ≤ L∥y − x∥2
or

f(x)− L∥y − x∥2 ≤ f(y) ≤ f(x) + L∥y − x∥2

We call L the Lipschitz constant of f over I .

Let functions f1 and f2 be both Lipschitz continuous with constants L1 and L2, the upper Lip-
schitz constant of their composition f1 ◦ f2 is L1L2.

|f1(f2(y))− f1(f2(x))| ≤ L1|f2(y)− f2(x)| ≤ L1L2∥y − x∥2

Generally, Let f = f1 ◦ f2 ◦ .... ◦ fK and the Lipschitz constant of fi be Li for all i ∈
{1, 2, ...,K}, then the Lipschitz constant of f is L ≤

∏K
k=1 Lk .
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Lipschitz continuity
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Spectral Analysis of Unstability

Mathematically, if ϕ(x) denotes the output of a network ofK layers corresponding to
input x and trained parametersW , we write

ϕ(x) = ϕK(ϕK−1(...ϕ1(x;W1)...;WK−1)WK)

where ϕK denotes the operator mapping layer k − 1 to layer k.
The unstability of ϕ(x) can be explained by inspecting the upper Lipschitz constant of
each layer, defined as the constant Lk > 0 such that

∀x, r, ∥ϕk(x;Wk)− ϕk(x+ r;Wk)∥ ≤ Lk∥r∥

The resulting network thus satsifies ∥ϕ(x+ r)− ϕ(x)∥ ≤ L∥r∥, with L ≤
∏K

k=1 Lk .
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Lipschitz continuity

Let f : I → R be a continuous and differntiable function over some set I ⊆ Rd, if we have
∥f ′(x)∥2 ≤ m for all x ∈ I , thenm is the upper Lipschitz constant of f (L ≤ m).

Proof sketch:
Mean value theorem: Let f : I → R be a continuous and differntiable function over some set
I ⊆ Rd, For all a, b ∈ I (b > a), there exists some c ∈ (a, b) such that:

f ′(c) =
f(b)− f(a)

b− a

For all a, b ∈ I , there exist c ∈ (a, b), such that:

|f(b)− f(a)| = ∥f ′(c).b− a∥2 ≤ ∥f ′(c)∥2∥b− a∥2.

Since we know that ∥f ′(c)∥2 ≤ m, we have

|f(b)− f(a)| ≤ m∥b− a∥2.
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Spectral Analysis of Unstability

ReLU and max pooling layers have a Lipschitz constant of 1.
The upper bound of derivative is 1.

Batch normalization layer has a Lipschitz constant of γ√
σ2+ϵ

∇xBN(x) = ∇xγ
x−µ√
σ2+ϵ

+ β = γ√
σ2+ϵ

Linear layers (Wx) have the Lipschitz constant of σ(W ), where σ is the spectral norm
(largest singular value).

Lipschits constant of linear layers

∥Wy − Wx∥2 ≤ L∥y − x∥2 ⇒ ∥W (y − x)∥2 ≤ L∥y − x∥2

⇒
z=y−x

∥Wz∥2 ≤ L∥z∥2 ⇒ L ≥
∥Wz∥2

∥z∥2

⇒ L = σ(W )

The spectral norm of a matrixA ∈ Rm×n is defined as

σ(A) = max
x∈Rn,x ̸=0

∥Ax∥2

∥x∥2

which corresponds to the largest singular value ofA

Spectral norm definition source.
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Spectral Analysis of Unstability

2.75× 10× 7× 7.5× 11× 3.12× 4× 4 ≈ 793000

Notice that we compute upper bounds: large bounds do not automatically translate into
existence of adversarial examples; however, small bounds guarantee that no such examples
can appear.
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Abstract

We argue the primary cause of neural networks’ vulnerability to adversarial perturbation is
their linear nature.
Giving the first explanation of the most intriguing fact about them: their generalization
across architectures and training sets.
We propose a simple and fast method of generating adversarial examples. Using this
approach to provide examples for adversarial training.
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Smoothness Prior with L∞

For problems with well-separated classes, we expect the classifier to assign the same class
to x and x′ = x+ η so long as ∥η∥∞ ≤ ϵ, where ϵ is small.

For x = [x1, x2, . . . , xd]
T , ∥x∥∞ = max

i
|xi|.
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The Linear Explanation of Adversarial Examples

Let ŷ = wTx and x′ = x+ η, the dot product between weight vectorw and adversarial
example x′ is as follows

ŷ′ = wTx′ = wT (x+ η) = wTx+wT η ⇒ ŷ′ − ŷ = wT η

The adversarial perturbation causes the activation to grow bywT η.

To generate adversarial example for x, we should maximizewT η, such that ∥η∥∞ ≤ ϵ.
Therefore, we have the following maximization problem.

argmax
η

< w, η >

s.t. ∥η∥∞ ≤ ϵ

The solution to the above problem is η∗ = ϵ.sign(w), we have

ŷ′ − ŷ = wT η∗ = wT ϵ.sign(w) = ϵ∥w∥1

Ifw has n dimensions and the average magnitude of an element of the weight vector ism,
then the activation will grow by ϵmn. Thereby, as the dimension of the input increases,
the value of ŷ′ − ŷ will grow.
This explanation shows that a simple linear model can have adversarial examples if its
input has sufficient dimensionality.
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Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.
It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).
More nonlinear models such as sigmoid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.
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activation function).
More nonlinear models such as sigmoid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Recall: Taylor Series (Expansion)
Suppose n is a positive integer and f : R → R is n times differentiable at a point x0. Then

f(x) =

n∑
k=0

f(k)(x0)

k!
(x − x0)

k
+ Rn(x, x0)

= f(x0) + f
′
(x0)(x − x0) +

f”(x0)

2
(x − x0)

2
+ ...

where the remainder Rn satisfies

Rn(x, x0) = o(|x− x0|n) as x → x0.

Definition: A sequence of numbersXn is said to be o(rn) if Xn
rn

→ 0 as n → ∞.
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most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Consequently, we can linearly approximate classifier f : Rd → R around data point x0 by
Taylor expansion. We have:

f(x) = f(x0) + (x− x0)
T∇xf(x)
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We can replace classifier output with cost function J

η = ϵ.sign(∇xJ(θ, x, y))
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Fast Gradient Sign Method (FGSM)

Let θ be the parameters of a model, x the input to the model, y the label associated with x and
J(θ,x, y) be the cost used to train the neural network.

We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained perturbation of

η = ϵ sign(∇xJ(θ,x, y))

We refer to this as the “fast gradient sign method” of generating adversarial examples.
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.

In this setting, back propagation for gradient computation of the targeted model is
prohibited.
Threat model

Score-based (the adversary has access to the target model scores)
Decision-based (the adversary has only access to the target model label)

Types
Transfer-based and Query-based

Transfer-based
Create a surrogate model with high fidelity to the taget model.
Generate adversarial examples on the surrogate model using white-box attacks.
Then, transfer pregenerated adversarial examples to the target model.

Query-based
Based on the target model responses for consecutive queries

Gradient estimation
Based on zero-order (ZO) optimization algorithms

Search-based
Based on choosing a search strategy using a search distribution.
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Potemkin village - Clever Hans

These results suggest that classifiers based on modern machine learning techniques, even
those that obtain excellent performance on the test set, are not learning the true underlying
concepts that determine the correct output label.
Instead, these algorithms have built a Potemkin village that works well on naturally
occuring data, but is exposed as a fake when one visits points in space that do not
have high probability in the data distribution.
Clever Hans was a horse that was claimed to have performed arithmetic and other
intellectual tasks. After a formal investigation in 1907, psychologist Oskar Pfungst
demonstrated that the horse was not actually performing these mental tasks, but was
watching the reactions of his trainer.
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Towards Deep Learning Models Resistant to Adversarial
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Abstract

We study the adversarial robustness of neural networks through the lens of robust
optimization
We use a natural saddle point (min-max) formulation to capture the notion of security
against adversarial attacks.
We explore the impact of network architecture on adversarial robustness and find that
model capacity plays an important role here.
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An Optimization View on Adversarial Robustness

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk.

The goal of standard training is to find model parameters θ that minimize the risk func. L

min
θ

E(x,y)∼D[L(x, y, θ)]

where data distribution D is over pairs of examples x ∈ Rd and corresponding labels
y ∈ [K] (K is the number of classes).

Unfortunately, ERM often does not yield models that are robust to adversarially crafted
examples.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately by changing the definition of population risk ED[L]

Instead of feeding samples from the distribution D directly into the loss L, we allow the
adversary to perturb the input first. This gives rise to the following saddle point problem

min
θ

E(x,y)∈D

[
max
δ∈S

L(θ, x+ δ, y)

]
where S ⊆ Rd is allowed perturbations that formalizes the manipulative power of the
adversary (e.g., L∞-ball).
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An Optimization View on Adversarial Robustness
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Adversarial Loss

min
θ

E(x,y)∈D

[
max
δ∈S

L(θ, x+ δ, y)

]
Our perspective stems from viewing the saddle point problem as the composition of an inner
maximization problem and an outer minimization problem.

The inner maximization problem aims to find an adversarial version of a given data
point x that achieves a high loss.
The goal of the outer minimization problem is to find model parameters so that the
adversarial loss given by the inner attack problem isminimized.
When the parameters θ yield a (nearly) vanishing risk, the corresponding model is
perfectly robust to attacks specified by our attack model.

Source
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Projected Gradient Descent (PGD) Attack - L∞

FGSM is a simple one-step scheme formaximizing the inner part of the saddle point formulation.
A more powerful adversary is the multi-step variant, which is essentially projected gradient
descent (PGD) on the negative loss function

x0 = Clip[0,1]{x+ U(−ϵ, ϵ)},

δt+1 = α.sign(∇xL(θ, x
t, y)),

xt+1 = Clip[max(0,x−ϵ),min(1,x+ϵ)]{xt + δt+1}.

where x is a natural data, U is uniform distribution, Clip[a,b]{x} function is used to trim values
outside interval [a, b] to the interval edges, ϵ is the radius of allowed perturbation ∥.∥∞ ≤ ϵ, and
t is iteration index.

Source
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PGD-L∞ Source Code

Source
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The Landscape of Adversarial Examples

While there are many local maxima spread widely apart within xi + S, they tend to have very
well-concentrated loss values.

This echoes the folklore belief that training neural networks is possible because the loss (as
a function of model parameters) typically has many local minima with very similar values.
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First-Order Adversaries

The concentration phenomenon suggests an intriguing view on the problem in which robustness
against the PGD adversary yields robustness against all first-order adversaries

As long as the adversary only uses gradients of the loss function with respect to the input,
we conjecture that it will not find significantly better local maxima than PGD.
Of course, our exploration with PGD does not preclude the existence of some isolated
maxima with much larger function value.
However, our experiments suggest that such better local maxima are hard to find with first
order methods.
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Network Capacity and Adversarial Robustness

Classifying examples in a robust way requires a stronger classifier, since the presence of adver-
sarial examples changes the decision boundary of the problem to a more complicated one.

Our experiments verify that capacity is crucial for robustness, as well as for the ability to
successfully train against strong adversaries.
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Network Capacity and Adversarial Robustness

Either increasing the capacity of the network, or using a stronger method for the inner opti-
mization problem reduces the effectiveness of adversarial inputs (in other words, increase the
robustness of model).
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