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Abstract

m Deep neural networks are powerful learning models that achieve excellent performance on
visual and speech recognition problems.

m It can be difficult to interpret and can have counter-intuitive properties.
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Abstract

m Deep neural networks are powerful learning models that achieve excellent performance on
visual and speech recognition problems.

m It can be difficult to interpret and can have counter-intuitive properties.

m The paper discusses two counter-intuitive properties of deep neural networks.

There is no distinction between individual high level units and random linear combinations of
high level units.
m [t suggests that it is the space, rather than the individual units, that contains the semantic information in
the high layers of neural networks.
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Abstract

m Deep neural networks are powerful learning models that achieve excellent performance on
visual and speech recognition problems.

m It can be difficult to interpret and can have counter-intuitive properties.

m The paper discusses two counter-intuitive properties of deep neural networks.

There is no distinction between individual high level units and random linear combinations of
high level units.

m [t suggests that it is the space, rather than the individual units, that contains the semantic information in
the high layers of neural networks.

The authors found that applying an imperceptible non-random perturbation to a test image, it is
possible to arbitrarily change the network’s prediction.
m They term the so perturbed examples Adversarial Examples.
m They found that adversarial examples are relatively robust, and are shared by neural networks with varied
number of layers, activations or trained on different subsets of the training data.
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Notation

= Denote by z € R™ an input image, and ¢ (x) activation values of some layer, where m is
the input dimension.
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Units of ¢(z)

m Traditional computer vision systems rely on feature extraction: often a single feature is
easily interpretable, e.g. a histogram of colors.

= Some works interpret an activation of a hidden unit as a meaningful feature. They look for
input images which maximize the activation value of this single feature.

m The aforementioned technique can be formally stated as visual inspection of images x?,
which satisfy (or are close to maximum attainable value):

2’ = argmaz (p(), e;) (€]
z€T

where Z is a hold-out set of images from the data distribution that the network was not
trained on and e; is the natural basis vector assocated with the ¢-th hidden unit.

Adversarial Examples February
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Units of ¢(z)

BhENRERERN

(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or
lower straight stroke.

(c) Unit senstive to left, upper round (d) Unit senstive to diagonal straight
stroke. stroke.
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Units of ¢(z)

The experiments show that any random direction v € R™ gives rise to similarly
interpretable semantic properties.

More formally, They find that images =’ are semantically related to each other, for many
x’ such that
2 = argmaz ($(x), ) @
z€l

This suggests that the natural basis is not better than a random basis for inspecting the
properties of ¢(x).

This puts into question the notion that neural networks disentangle variation factors across
coordinates.
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Units of ¢(z)

BESHECERASN EEIEYEEIRFIFIEIE

(a) Direction sensitive to upper straight (b) Direction sensitive to lower left loop.

stroke, or lower round stroke.

(d) Direction sensitive to right, upper

(c) Direction senstive to round top stroke.
round stroke.

February 6, 2024 10/50

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples



Intriguing properties of neural networks
0000000 0®O00000000O000O000000

Network Level Inspection

m So far, unit-level inspection methods had relatively little utility beyond confirming certain
intuitions regarding the complexity of the representations learned by a deep neural network

m Network level inspection methods can be useful in the context of explaining classification
decisions made by a model

m For instance, identify the parts of the input which led to a correct classification of a given visual
input instance

m Such global analyses are useful in that they can make us understand better the

input-to-output mapping represented by the trained network.

Adversarial Examples
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How to Explain Individual Classification Decisions

A probability function P : R? — [0,1] of a classification model learned from examples
{(z1,91); -, (n,yn)} € R x {—1, 41} (binary classification) the explanation vector for a
classified test point x¢ is the local gradient of p at zo:

np(x0) = Vao P(z0)

= By this definition the explanation 7 is again a d-dimensional vector just like the test point
o is.
m The sign of each of its individual entries indicates whether the prediction would increase or

decrease when the corresponding feature of g is increased locally and each entry’s
absolute value give the amount of influence in the change in prediction.

m As a vector ) gives the direction of the steepest ascent from the test point to higher
probabilities for the positive class.

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples February
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How to Explain Individual Classification Decisions

(c) Local explanation vectors (d) Direction of explanation vectors
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Adversarial Examples

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Smoothness Prior (Local Generalization)

Smoothness Prior
For a small enough radius € > 0 in the vicinity of a given training input z, an « + r
satisfying ||r|| < e will get assigned a high probability of the correct class by the model.

m This kind of smoothness prior is typically valid for computer vision problems.
m In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

The main result of the paper is that for deep neural networks, the smoothness assumption does
not hold.

Sharif U. T. Adversarial Examples February 16 /50
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Blind Spots

m In some sense, what we describe is a way to traverse the manifold represented by the
network in an efficient way (by optimization) and finding adversarial examples in the
input space.

m The adversarial examples represent low-probability (high-dimensional) “pockets” in the
manifold, which are hard to efficiently find by simply randomly sampling the input around
a given example.

Adversarial Examples
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Formal description

For a given z € R™ image and target label [ € {1...k}, we aim to solve the following box-
constrained optimization problem:

Minimize ||r||2 subject to:
fleat+r)=1
x+rel0,1]™

» Informally, z’ = z + r is the closest image to z classified as [ by f.
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Formal description

For a given z € R™ image and target label [ € {1...k}, we aim to solve the following box-
constrained optimization problem:
Minimize ||r||2 subject to:
fleat+r)=1
x+rel0,1]™

» Informally, z’ = z + r is the closest image to z classified as [ by f.
m The minimizer  might not be unique.
m This task is non-trivial only if f(x) # .

= In general, the exact computation of =’ is a hard problem, so we approximate it by using a
box-constrained L-BFGS.
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Formal description

Recall: Generalized Lagrange Function (Karush—-Kuhn-Tucker (KKT) )

Suppose we wish to maximize f(z) subjectto g;j(z) =0forj =1,---,J, and hy(z) > 0
fork=1,--- K.

Minimize  f(x)
subjectto g;j(z) =0 for j=1,---,J
hg(z) >0 for k=1,---, K

We introduce Lagrange multipliers {\;} and {1z, }, and then optimize the Lagrangian function
given by

J K
L(m, {0} {med) = F(@) + D Nigs (@) + Y pwha(a)
Jj=1 k=1
subject to pg > 0 and prhr(z) =0fork=1,--- | K.

The optimal point z* of the above constrained optimization on f () is the same as the optimal
point of the unconstrained optimization L.

(See this playlist for more information about Lagrange multipliers)

Adversarial Examples
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Formal description

For a given z € R™ image and target label [ € {1...k}, we aim to solve the following box-
constrained optimization problem:
Minimize ||r||2 subject to:
fleat+r)=1
x+rel0,1]™

» Informally, z’ = z + r is the closest image to z classified as [ by f.
m The minimizer  might not be unique.
m This task is non-trivial only if f(x) # .

= In general, the exact computation of =’ is a hard problem, so we approximate it by using a
box-constrained L-BFGS.

Concretely, we find an approximation of =’ by performing line-search to find the minimum ¢ > 0
for which the minimizer r of the following problem satisfies f(xz + r) = I.

Minimize c||r||2 4 loss g (x + r,1) subject to « + r € [0, 1]™

m Since neural networks are non-convex in general, so we end up with an approximation to
find solution.

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples February
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Adversarial Examples

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Adversarial Examples
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Experimental results

Intriguing properties
m 100% success rate

m For all the networks we studied (MNIST, AlexNet (ImageNet)), for each sample, we have always
managed to generate very close, visually hard to distinguish, adversarial examples that are
misclassified by the original network.

Adversarial Examples



Intrigu ro| s of neural nel ks
00000000000000000080000000

Experimental results

Intriguing properties
m 100% success rate
m For all the networks we studied (MNIST, AlexNet (ImageNet)), for each sample, we have always
managed to generate very close, visually hard to distinguish, adversarial examples that are
misclassified by the original network.
m Cross model generalization

m A relatively large fraction of examples will be misclassified by networks trained from scratch with
different hyper-parameters (number of layers, regularization or initial weights).

Adversarial Examples



Intrigu ro| s of neural nel ks
00000000000000000080000000

Experimental results

Intriguing properties
m 100% success rate
m For all the networks we studied (MNIST, AlexNet (ImageNet)), for each sample, we have always
managed to generate very close, visually hard to distinguish, adversarial examples that are
misclassified by the original network.
m Cross model generalization
m A relatively large fraction of examples will be misclassified by networks trained from scratch with
different hyper-parameters (number of layers, regularization or initial weights).
m Cross training-set generalization

m A relatively large fraction of examples will be misclassified by networks trained from scratch on a
disjoint training set.
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Experimental results

Intriguing properties
m 100% success rate
m For all the networks we studied (MNIST, AlexNet (ImageNet)), for each sample, we have always
managed to generate very close, visually hard to distinguish, adversarial examples that are
misclassified by the original network.
m Cross model generalization
m A relatively large fraction of examples will be misclassified by networks trained from scratch with
different hyper-parameters (number of layers, regularization or initial weights).
m Cross training-set generalization

m A relatively large fraction of examples will be misclassified by networks trained from scratch on a
disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just
the results of overfitting to a particular model or to the specific selection of the training set.

Adversarial Examples
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Spectral Analysis of Unstability

m The adversarial examples show that there exist small additive perturbations of the input
(in Euclidean sense) that produce large perturbations at the output of the last layer.

= Mathematically, if ¢(z) denotes the output of a network of K layers corresponding to
input « and trained parameters W, we write

&(@) = o (Pr—1(--P1(2; W1)..; WK —1) W)

where ¢ i denotes the operator mapping layer k£ — 1 to layer k.

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples February
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Spectral Analysis of Unstability

m The adversarial examples show that there exist small additive perturbations of the input
(in Euclidean sense) that produce large perturbations at the output of the last layer.

= Mathematically, if ¢(z) denotes the output of a network of K layers corresponding to
input « and trained parameters W, we write

&(@) = o (Pr—1(--P1(2; W1)..; WK —1) W)

where ¢ i denotes the operator mapping layer k£ — 1 to layer k.

u The unstability of ¢(z) can be explained by inspecting the upper Lipschitz constant of
each layer.

Adversarial Examples
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Lipschitz continuity

A function f : I — R over some set I C R is called Lipschitz continuous if there exists a
positive real constant L such that, for all x,y € I,

1f(y) = f(2)] < Llly — |2

or
f(x) = Llly —=zll2 < f(y) < f(=) + Llly — zll2

We call L the Lipschitz constant of f over I.

A. M. Sadeghzadeh Sharif U. T. Adversarial Examples February
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Lipschitz continuity

A function f : I — R over some set I C R is called Lipschitz continuous if there exists a
positive real constant L such that, for all x,y € I,

1f(y) = f(2)] < Llly — |2

or
f(x) = Llly —=zll2 < f(y) < f(=) + Llly — zll2

We call L the Lipschitz constant of f over I.

Let functions f7 and f2 be both Lipschitz continuous with constants L, and L2, the upper Lip-
schitz constant of their composition f1 o fa is L1 La.
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Lipschitz continuity

A function f : I — R over some set I C R is called Lipschitz continuous if there exists a
positive real constant L such that, for all x,y € I,

1f(y) = f(2)] < Llly — |2

or
f(x) = Llly —=zll2 < f(y) < f(=) + Llly — zll2

We call L the Lipschitz constant of f over I.

Let functions f7 and f2 be both Lipschitz continuous with constants L, and L2, the upper Lip-
schitz constant of their composition f1 o fa is L1 La.

If1(f2(y) = fi(f2(2))] < Lalf2(y) — f2(2)] < LiLa|ly — z|2
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Lipschitz continuity

A function f : I — R over some set I C R is called Lipschitz continuous if there exists a
positive real constant L such that, for all x,y € I,

1f(y) = f(2)] < Llly — |2

or
f(x) = Llly —=zll2 < f(y) < f(=) + Llly — zll2

We call L the Lipschitz constant of f over I.

Let functions f7 and f2 be both Lipschitz continuous with constants L, and L2, the upper Lip-
schitz constant of their composition f1 o fa is L1 La.

If1(f2(y) = fi(f2(2))] < Lalf2(y) — f2(2)] < LiLa|ly — z|2

Generally, Let f = f1 o fa o .... o fx and the Lipschitz constant of f; be L; for all i €
{1,2, ..., K}, then the Lipschitz constant of f is L < Hle Ly.

Adversarial Examples
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Lipschitz continuity

Adversarial Examples



roperties of neural networks
OOOOOOOOOOOOOOOOOOOO0.0000

Lipschitz continuity
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Spectral Analysis of Unstability

= Mathematically, if ¢(z) denotes the output of a network of K layers corresponding to
input « and trained parameters W, we write

d(x) = o (Pr—1(--P1(2; W1).o; Wi _1)WE)

where ¢ x denotes the operator mapping layer k£ — 1 to layer k.

m The unstability of ¢(z) can be explained by inspecting the upper Lipschitz constant of
each layer, defined as the constant L > 0 such that

Va, 7, ||k (x; Wi) — ér(z + 7 Wi)ll < Lilir||

u The resulting network thus satsifies ||¢(z + r) — ¢(x)|| < L||r||, with L < HkK:1 Ly,.

Sharif U. T. Adversarial Examples February 6, 2024



g properties of neural networks
000000000000 00000O000000e00

Lipschitz continuity

Let f : I — R be a continuous and differntiable function over some set I C R<, if we have
|| f'(x)||2 < mforall z € I, then m is the upper Lipschitz constant of f (L < m).
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Lipschitz continuity

Let f : I — R be a continuous and differntiable function over some set I C R<, if we have
|| f'(x)||2 < mforall z € I, then m is the upper Lipschitz constant of f (L < m).

Proof sketch:
Mean value theorem: Let f : ] — R be a continuous and differntiable function over some set
I CR% Foralla,b € I (b> a), there exists some ¢ € (a, b) such that:

f(b) — f(a
g = 101
—a
Y o
Forall a,b € I, there exist ¢ € (a,b), such that: secant "}
1) = fa)| = If'(e).b = allz < || (c)l2]]b — all2. y’(x) 4
Since we know that || f/(c)||2 < m, we have o
Tangent at ¢
[f(b) — f(a)] < m|lb— all2.
Ta ¢ b x

Adversarial Examples ebrt 26/50
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Spectral Analysis of Unstability

m ReLU and max pooling layers have a Lipschitz constant of 1.
m The upper bound of derivative is 1.
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Spectral Analysis of Unstability

m ReLU and max pooling layers have a Lipschitz constant of 1.
m The upper bound of derivative is 1.
= Batch normalization layer has a Lipschitz constant of ——L—

0'2+e
A
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Spectral Analysis of Unstability

m ReLU and max pooling layers have a Lipschitz constant of 1.
m The upper bound of derivative is 1.
= Batch normalization layer has a Lipschitz constant of —=%

0'2+e
TRBNGE) = Ve =

m Linear layers (W) have the Lipschitz constant of o(W'), where o is the spectral norm
(largest singular value).
m Lipschits constant of linear layers

Wy — Wzl < Llly —zllzs = [W(y —x)[l2 < Llly — =2

- o IWzll2
= Wzl S Ljizle > L > S22

=L =o0(W)
S BB

Sharif U. T. Adversarial Examples February
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Spectral Analysis of Unstability

m ReLU and max pooling layers have a Lipschitz constant of 1.
m The upper bound of derivative is 1.

m Batch normalization layer has a Lipschitz constant of %_‘_
[ed €

¢ TeBNGR) = Vv 4=

m Linear layers (W) have the Lipschitz constant of o(W'), where o is the spectral norm
(largest singular value).
m Lipschits constant of linear layers
Wy = Wzllz < Llly — zll2 = [[W(y — @)ll2 < Llly — zl2
W =2

= Wzl < Lllzll2 = L 2>
z=y—e ll=ll2

=y—

=L =o0(W)
R™*™ is defined as

lAz |2
max
zERM™ ,z#0 HIHQ

m The spectral norm of a matrix A €

o(A) =

which corresponds to the largest singular value of A

Spectral norm definition source.

Adversarial Examples
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Spectral Analysis of Unstability

Layer Size Stride Upper bound
Conv. 1 3 x 11 x 11 x 96 4 2.75
Conv. 2 96 X 5 X 5 X 256 1 10
Conv. 3 256 X 3 X 3 X 384 1 7
Conv. 4 384 X 3 X 3 x 384 1 7.5
Conv. 5 384 X 3 X 3 X 256 1 11

FC. 1 9216 x 4096 N/A 3.12

FC.2 4096 x 4096 N/A

FC.3 4096 x 1000 N/A 4

Table 5: Frame Bounds of each rectified layer of the network from [9].

2.75 x 10 x 7x 7.5 x 11 x 3.12 x 4 x 4 = 793000

m Notice that we compute upper bounds: large bounds do not automatically translate into
existence of adversarial examples; however, small bounds guarantee that no such examples
can appear.

Adversarial Examples
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Explaining and Harnessing Adversarial Examples

Published as a conference paper at ICLR 2015

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{gocdfellow, shlens, szegedy}@google. com
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Abstract

m We argue the primary cause of neural networks’ vulnerability to adversarial perturbation is
their linear nature.

m Giving the first explanation of the most intriguing fact about them: their generalization
across architectures and training sets.

m We propose a simple and fast method of generating adversarial examples. Using this
approach to provide examples for adversarial training.
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Smoothness Prior with L

m For problems with well-separated classes, we expect the classifier to assign the same class
toz and 2’ = x + n so long as ||n||cc < €, where € is small.

m Forx = [z1,22,...,24]7, [|X]|co = max |3 ].

Adversarial Examples
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The Linear Explanation of Adversarial Examples

m Let j = w”x and @’ = x + 7, the dot product between weight vector w and adversarial

example 2’ is as follows

T

j = w'a’ = w(@+n) = we+wln =g —g=w'n

The adversarial perturbation causes the activation to grow by w?'7.
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The Linear Explanation of Adversarial Examples

m Let j = w”x and @’ = x + 7, the dot product between weight vector w and adversarial
example 2’ is as follows
7 =wla :wT(a:+7]) =wlz+wn=9 —g=wTy
The adversarial perturbation causes the activation to grow by w?'7.

m To generate adversarial example for x, we should maximize w7, such that ||n||co < e
Therefore, we have the following maximization problem.

argmax < w,n >
n

st Inlles <€
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The Linear Explanation of Adversarial Examples

m Let j = w”x and @’ = x + 7, the dot product between weight vector w and adversarial
example 2’ is as follows

Q/:me/:wT(a:+7]):me+wT7]:>gj/fQ:'an

The adversarial perturbation causes the activation to grow by w?'7.

m To generate adversarial example for x, we should maximize w7, such that ||n||co < e
Therefore, we have the following maximization problem.

argmax < w,n >
n

st [nllec <€
The solution to the above problem is n* = e.sign(w), we have

¥ —g=w"n" = wlesign(w) = c|wl:
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The Linear Explanation of Adversarial Examples

m Let j = w”x and @’ = x + 7, the dot product between weight vector w and adversarial
example 2’ is as follows

T

j = w'a’ = w(@+n) = we+wln =g —g=w'n

The adversarial perturbation causes the activation to grow by w?'7.

m To generate adversarial example for x, we should maximize w7, such that ||n||co < e
Therefore, we have the following maximization problem.

argmax < w,n >
n
st |nlleo <€

The solution to the above problem is n* = e.sign(w), we have

¥ —g=w"n" = wlesign(w) = c|wl:

m If w has n dimensions and the average magnitude of an element of the weight vector is m,
then the activation will grow by emn. Thereby, as the dimension of the input increases,
the value of §’ — § will grow.

m This explanation shows that a simple linear model can have adversarial examples if its
input has sufficient dimensionality.
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Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.

m It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).

= More nonlinear models such as sigmeid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.
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Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.

m It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).

= More nonlinear models such as sigmeid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Recall: Taylor Series (Expansion)

Suppose n is a positive integer and f : R — R is n times differentiable at a point zo. Then
(k)
f(z) = Z 7 (IO) (@ — 20)* + Rn (z, z0)

f(z 0)( S

= f(=o0) + ' (zo0)(z — o) +
where the remainder R,, satisfies
Rn(z,z0) = o(|x — zo|™) as z — zo.

Definition: A sequence of numbers X, is said to be o(ry, ) if % — 0asn — oo.
n
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Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.

m It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).

= More nonlinear models such as sigmeid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Consequently, we can linearly approximate classifier f : R — R around data point zo by
Taylor expansion. We have:

f(@) = f(@o) + (& — 20)" Vo f ()
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Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.

m It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).

= More nonlinear models such as sigmeid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Consequently, we can linearly approximate classifier f : R — R around data point zo by
Taylor expansion. We have:

f(@) = f(zo) + (x — 0)" Va f(x)
Let ' = zg + 1, we get
f@') = f@+n) = f(zo) + )" Vauf(z) = f(@') = flzo) = ()" Vuf(x)

To maximize difference between f(x) and f(z’), we should maximize < 77,V f(z) >.
Given ||7||eo < €, we have
n = e.sign(Vz f(z))

Adversarial Examples



Explaining and Harne: Adversarial Examples
00000@000

Linear Perturbation for Non-linear Models

The linear view of adversarial examples suggests a fast way of generating them.

m It is hypothesized that deep nets are too linear to resist adversarial perturbations (ReLU
activation function).

= More nonlinear models such as sigmeid or tanh networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime.

Hence, we suppose Deep nets have linear behavior in the vicinity of each data point.

Consequently, we can linearly approximate classifier f : R — R around data point zo by
Taylor expansion. We have:

f(@) = f(zo) + (x — 0)" Va f(x)
Let ' = zg + 1, we get
f@') = f@+n) = f(zo) + )" Vauf(z) = f(@') = flzo) = ()" Vuf(x)

To maximize difference between f(x) and f(z’), we should maximize < 77,V f(z) >.
Given ||7||eo < €, we have
n = e.sign(Vz f(z))

We can replace classifier output with cost function J

n= ESZng(VJ;J(Qa Z, y))
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Fast Gradient Sign Method (FGSM)

Let 6 be the parameters of a model, « the input to the model, y the label associated with & and
J(6,z,y) be the cost used to train the neural network.

We can linearize the cost function around the current value of 8, obtaining an optimal max-norm
constrained perturbation of
n = esign(VyJ(6,x,y))

We refer to this as the “fast gradient sign method” of generating adversarial examples.

+.007 x
. ; x +
* sign(VaJ (6, 2, y)) esign(VzJ (0,2, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
let al.| 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our € of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNel's conversion to real numbers.
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.

m In this setting, back propagation for gradient computation of the targeted model is
prohibited.
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.
m In this setting, back propagation for gradient computation of the targeted model is
prohibited.
m Threat model

m Score-based (the adversary has access to the target model scores)
m Decision-based (the adversary has only access to the target model label)
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m In this setting, back propagation for gradient computation of the targeted model is
prohibited.
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m Score-based (the adversary has access to the target model scores)
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.

m In this setting, back propagation for gradient computation of the targeted model is
prohibited.
m Threat model

m Score-based (the adversary has access to the target model scores)
m Decision-based (the adversary has only access to the target model label)

m Types
m Transfer-based and Query-based

Transfer-based
u Create a surrogate model with high fidelity to the taget model.
m Generate adversarial examples on the surrogate model using white-box attacks.

m Then, transfer pregenerated adversarial examples to the target model.
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Black-box Adversarial Examples

The only capability of the black-box adversary is to observe the output given by the target model
to chosen inputs.
m In this setting, back propagation for gradient computation of the targeted model is
prohibited.
m Threat model

m Score-based (the adversary has access to the target model scores)
m Decision-based (the adversary has only access to the target model label)

m Types
m Transfer-based and Query-based

Transfer-based
u Create a surrogate model with high fidelity to the taget model.
m Generate adversarial examples on the surrogate model using white-box attacks.

m Then, transfer pregenerated adversarial examples to the target model.

Query-based
= Based on the target model responses for consecutive queries
m Gradient estimation
m Based on zero-order (ZO) optimization algorithms
m Search-based
m Based on choosing a search strategy using a search distribution.
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Potemkin village - Clever Hans

m These results suggest that classifiers based on modern machine learning techniques, even
those that obtain excellent performance on the test set, are not learning the true underlying
concepts that determine the correct output label.

Instead, these algorithms have built a Potemkin village that works well on naturally
occuring data, but is exposed as a fake when one visits points in space that do not
have high probability in the data distribution.

m Clever Hans was a horse that was claimed to have performed arithmetic and other
intellectual tasks. After a formal investigation in 1907, psychologist Oskar Pfungst
demonstrated that the horse was not actually performing these mental tasks, but was
watching the reactions of his trainer.
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Abstract

m We study the adversarial robustness of neural networks through the lens of robust
optimization

= We use a natural saddle point (min-max) formulation to capture the notion of security
against adversarial attacks.

m We explore the impact of network architecture on adversarial robustness and find that
model capacity plays an important role here.
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An Optimization View on Adversarial Robustness

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk.

m The goal of standard training is to find model parameters 6 that minimize the risk func. L
mezn E(z,y)ND[L(xr Y, 0)]

where data distribution D is over pairs of examples € R? and corresponding labels
y € [K] (K is the number of classes).
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Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk.

m The goal of standard training is to find model parameters 6 that minimize the risk func. L
mezn E(z,y)ND[L(xr Y, 0)]

where data distribution D is over pairs of examples € R? and corresponding labels
y € [K] (K is the number of classes).

m Unfortunately, ERM often does not yield models that are robust to adversarially crafted
examples.
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An Optimization View on Adversarial Robustness

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk.

m The goal of standard training is to find model parameters 6 that minimize the risk func. L
mezn E(z,y)ND[L(xr Y, 0)]

where data distribution D is over pairs of examples € R? and corresponding labels
y € [K] (K is the number of classes).

m Unfortunately, ERM often does not yield models that are robust to adversarially crafted
examples.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately by changing the definition of population risk Ep[L]

m Instead of feeding samples from the distribution D directly into the loss L, we allow the
adversary to perturb the input first. This gives rise to the following saddle point problem

min B yyep maz L0,z +9,y)

where S C R? is allowed perturbations that formalizes the manipulative power of the
adversary (e.g., Loo-ball).
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Adversarial Loss

mem E(z,y)ep mag L0,z +4,y)

Our perspective stems from viewing the saddle point problem as the composition of an inner
maximization problem and an outer minimization problem.

local min local max saddle point
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u The inner maximization problem aims to find an adversarial version of a given data
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Our perspective stems from viewing the saddle point problem as the composition of an inner
maximization problem and an outer minimization problem.

u The inner maximization problem aims to find an adversarial version of a given data
point x that achieves a high loss.

m The goal of the outer minimization problem is to find model parameters so that the
adversarial loss given by the inner attack problem is minimized.
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Adversarial Loss

mem E(z,y)ep mag L0,z +4,y)

Our perspective stems from viewing the saddle point problem as the composition of an inner
maximization problem and an outer minimization problem.

u The inner maximization problem aims to find an adversarial version of a given data
point x that achieves a high loss.

m The goal of the outer minimization problem is to find model parameters so that the
adversarial loss given by the inner attack problem is minimized.

m When the parameters 6 yield a (nearly) vanishing risk, the corresponding model is
perfectly robust to attacks specified by our attack model.

local min local max saddle point
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Projected Gradient Descent (PGD) Attack - L

FGSM is a simple one-step scheme for maximizing the inner part of the saddle point formulation.
A more powerful adversary is the multi-step variant, which is essentially projected gradient
descent (PGD) on the negative loss function

® = Clipp 1{z + U(—¢,€)},
5t+1 = a.sign(VzL(97 xtvy))’
e = Clippman(0,0—)min(1,ote) izt + 81}

where z is a natural data, U is uniform distribution, Clip|q ) {2} function is used to trim values
outside interval [a, b] to the interval edges, € is the radius of allowed perturbation ||.||cc < €, and

t is iteration index.
High
loss
Low
loss

Source
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PGD-L, Source Code

def perturb(self, x_nat, y, sess):

Given a set of examples (x_nat, y), returns a set of adversarial
examples within epsilon of x_nat in 1_infinity norm."""
if self.rand:
x = x_nat + np.random.uniform(-self.epsilon, self.epsilon, x_nat.shape)
x = np.clip(x, @, 1) # ensure valid pixel range
else:

x = np.copy(x_nat)

for i in range(self.k):
grad = sess.run(self.grad, feed_dict={self.model.x_input: x,

self.model.y_input: y})

%

+= self.a * np.sign(grad)

x = np.clip(x, x_nat - self.epsilon, x nat + self.epsilon)

x = np.clip(x, @, 1) # ensure valid pixel range

return x

Source



https://github.com/MadryLab/mnist_challenge/blob/master/pgd_attack.py
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The Landscape of Adversarial Examples

While there are many local maxima spread widely apart within z; + S, they tend to have very
well-concentrated loss values.

m This echoes the folklore belief that training neural networks is possible because the loss (as
a function of model parameters) typically has many local minima with very similar values.

5 80
g 4 60 & 03
<
H 3 20
a 2
g 20 02
1
old
0 25 50 75 10 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Iterations Iterations Iterations Iterations

(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10
Standard training ~ Adversarial training ~ Natural training ~ Adversarial training

Figure 1: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFARI10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the /«-ball around the
same natural example (additional plots for different examples appear in Figure[11). The adversarial
loss plateaus after a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially
trained networks are significantly smaller than on their standard counterparts.
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First-Order Adversaries

The concentration phenomenon suggests an intriguing view on the problem in which robustness
against the PGD adversary yields robustness against all first-order adversaries

m As long as the adversary only uses gradients of the loss function with respect to the input,
we conjecture that it will not find significantly better local maxima than PGD.

m Of course, our exploration with PGD does not preclude the existence of some isolated
maxima with much larger function value.

m However, our experiments suggest that such better local maxima are hard to find with first
order methods.
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Network Capacity and Adversarial Robustness

Classifying examples in a robust way requires a stronger classifier, since the presence of adver-
sarial examples changes the decision boundary of the problem to a more complicated one.

m Our experiments verify that capacity is crucial for robustness, as well as for the ability to
successfully train against strong adversaries.

Figure 3: A conceptual illustration of standard vs. adversarial decision boundaries. Left: A set of
points that can be easily separated with a simple (in this case, linear) decision boundary. Middle:
The simple decision boundary does not separate the /-balls (here, squares) around the data points.
Hence there are adversarial examples (the red stars) that will be misclassified. Right: Separating
the £-balls requires a significantly more complicated decision boundary. The resulting classifier is
robust to adversarial examples with bounded /,-norm perturbations.
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Network Capacity and Adversarial Robustness

Either increasing the capacity of the network, or using a stronger method for the inner opti-
mization problem reduces the effectiveness of adversarial inputs (in other words, increase the
robustness of model).

MNIST
100 —F——F—1 100[ — 100) a :Npg;ﬁl
7 % %0 % 8! ~ PCD
£ ) 60 60| % 01
g 4 40 40| <
< 20 20 20| L o001
0 0 0 <
T2 4 16 T 2 4 8 16 T2 4 1 T2 4 8§ 16
Capacity scale Capacity scale Capacity scale Capacity scale
CIFAR10
Simple‘Wide Simple‘Wide Simple‘Wide Simple‘ Wide
Natural 92.7% (95.2% 87.4% [90.3% 79.4% (87.3% 0.00357{0.00371
FGSM  27.5% (32.7% 90.9% [95.1% 51.7% |56.1% 0.0115 |0.00557
PGD  0.8% |3.5% 0.0% | 0.0% 43.7% |45.8% 111 |0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 4: The effect of network capacity on the performance of the network. We trained MNIST and
CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial
examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset,
we show how the standard and adversarial accuracy changes with respect to capacity for each
training regime. In the final plot/table, we show the value of the cross-entropy loss on the
adversarial examples the networks were trained on. This corresponds to the value of our saddle
point formulation for differen sets of allowed perturbations.
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Either increasing the capacity of the network, or using a stronger method for the inner opti-
mization problem reduces the effectiveness of adversarial inputs (in other words, increase the

robustness of model).

MNIST
T [ ” . ~Natural
g 80 50 0 s ! - PGD
g 6 60 60 Y o1 —7
g 40 40 s
< 20 20 20 L onm
of s—t— 0 0 <
T2 4 © 16 1_2 4 s 16 1_2 4 & 16 T2 4 8 16
Capacity scale Capacity scale Capacity scale Capacity scale
CIFAR10
Simple‘Wide Simple| Wide Simple| Wide
Natural 92.7% |952%  87.4% [90.3% 79.4% |87.3%|
FGSM  27.5% (32.7%  90.9% |95.1% 51.7% [56.1%
PGD  0.8% |3.5% 0.0% | 0.0% 43.7% 45.8“/3
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss
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